123 research outputs found

    A New Coelurosaurian Theropod from the La Buitrera Fossil Locality of Río Negro, Argentina

    Get PDF
    A new coelurosaurian theropod, Alnashetri cerropoliciensis, is reported here based on articulated hind limbs of a single individual discovered at the locality of La Buitrera (Candeleros Formation, Cenomanian–Turonian), Río Negro Province, Argentina. The new taxon differs from other coelurosaurs in the possession of a low ridge that separates the rostral tibial surface from the outer face of the lateral malleolus, and which extends proximally beyond the tip of the ascending process of the astragalus, and in the possession of ventral notches on the hemicondyles of the distal articulations on pedal phalanges III-1 and III-2. Alnashetri is easily distinguished from the dromaeosaurid Buitreraptor, the only other known small theropod from La Buitrera. Phylogenetic analysis supports alvarezsauroid affinities. The evidence supporting this relationship comes from the detailed anatomy of the ankle, however, and this concentration of character support within a single anatomical region may bias our results. If our proposed phylogenetic placement is accurate, Alnashetri antedates all other Argentinian alvarezsaurids and indicates that alvarezsaurids were present in the Neuquén Basin throughout the entire Late Cretaceous.Fil: Makovicky, Peter J.. Field Museum of National History; Estados UnidosFil: Apesteguía, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Gianechini, Federico Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentin

    An unusual new theropod with a didactyl manus from the upper cretaceous of patagonia, Argentina

    Get PDF
    Background Late Cretaceous terrestrial strata of the Neuquén Basin, northern Patagonia, Argentina have yielded a rich fauna of dinosaurs and other vertebrates. The diversity of saurischian dinosaurs is particularly high, especially in the late Cenomanian-early Turonian Huincul Formation, which has yielded specimens of rebacchisaurid and titanosaurian sauropods, and abelisaurid and carcharodontosaurid theropods. Continued sampling is adding to the known vertebrate diversity of this unit. Methodology/ Principal Findings A new, partially articulated mid-sized theropod was found in rocks from the Huincul Formation. It exhibits a unique combination of traits that distinguish it from other known theropods justifying erection of a new taxon, Gualicho shinyae gen. et sp. nov. Gualicho possesses a didactyl manus with the third digit reduced to a metacarpal splint reminiscent of tyrannosaurids, but both phylogenetic and multivariate analyses indicate that didactyly is convergent in these groups. Derived characters of the scapula, femur, and fibula supports the new theropod as the sister taxon of the nearly coeval African theropod Deltadromeus and as a neovenatorid carcharodontosaurian. A number of these features are independently present in ceratosaurs, and Gualicho exhibits an unusual mosaic of ceratosaurian and tetanuran synapomorphies distributed throughout the skeleton. Conclusions/ Significance Gualicho shinyae gen. et sp. nov. increases the known theropod diversity of the Huincul Formation and also represents the first likely neovenatorid from this unit. It is the most basal tetatanuran to exhibit common patterns of digit III reduction that evolved independently in a number of other tetanuran lineages. A close relationship with Deltadromaeus from the Kem Kem beds of Niger adds to the already considerable biogeographic similarity between the Huincul Formation and coeval rock units in North Africa.Fil: Apesteguía, Sebastián. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smith, Nathan D.. Natural History Museum Of Los Angeles County; Estados UnidosFil: Valieri, Rubén Juárez. Provincia de Rio Negro; ArgentinaFil: Makovicky, Peter J.. Field Museum Of Natural History; Estados Unido

    Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution

    Get PDF
    The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non- weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.Fil: Cullen, Thomas. Field Museum of National History; Estados Unidos. North Carolina State University; Estados Unidos. North Carolina Museum of Natural Sciences; Estados UnidosFil: Canale, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Provincia del Neuquén. Municipalidad de Villa El Chocón. Museo Paleontológico "Ernesto Bachmann"; ArgentinaFil: Apesteguía, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Fundación de Historia Natural Félix de Azara; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Smith, Nathan D.. Natural History Museum of Los Angeles County. Dinosaur Institute; Estados UnidosFil: Hu, Dongyu. Shenyang Normal University; República de China. Ministry of Natural Resources; República de ChinaFil: Makovicky, Peter J.. Field Museum of National History; Estados Unidos. University of Minnesota; Estados Unido

    Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill

    Get PDF
    The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as Triceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early-diverging taxa is required to test this further

    An effect size statistical framework for investigating sexual dimorphism in non-avian dinosaurs and other extinct taxa

    Get PDF
    Despite reports of sexual dimorphism in extinct taxa, such claims in non-avian dinosaurs have been underrepresented recently (~the last decade) and often criticized. Since dimorphism is widespread in sexually reproducing organisms today, underrepresentation might suggest either methodological shortcomings or that this diverse group exhibited highly unusual reproductive biology. Univariate significance testing, especially for bimodality, is ineffective and prone to false negatives. Species recognition and mutual sexual selection hypotheses, therefore, may not be required to explain supposed absence of sexual dimorphism across the grade, likely a type II error. Instead, multiple lines of evidence support sexual selection and variation of structures consistent with secondary sexual characteristics, strongly suggesting sexual dimorphism in non-avian dinosaurs. We propose a framework for studying sexual dimorphism in fossils, focusing on likely secondarily sexual traits and testing against all alternate hypotheses for variation in them using multiple lines of evidence. We use effect size statistics appropriate for low sample sizes, rather than significance testing, to analyze potential divergence of growth curves in traits and constrain estimates for dimorphism magnitude. In many cases, estimates of sexual variation can be reasonably accurate, and further developments in methods to improve sex assignments and account for intrasexual variation (e.g., mixture modelling) will improve accuracy. It is better to compare estimates for the magnitude of and support for dimorphism between datasets than to dichotomously reject or fail to reject monomorphism in a single species, enabling the study of sexual selection across phylogenies and time. We defend our approach with simulated and empirical data, including dinosaur data, showing that even simple approaches can yield fairly accurate estimates of sexual variation in many cases, allowing for comparison of species with high and low support for sexual variation.Funding provided by: National Science FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/100000001Award Number: PLR 1341645 and FRES 192588

    Dromaeosaurid skeleton II

    Get PDF
    45 p. : ill., map ; 26 cm.Includes bibliographical references (p. 40-43).The postcranial anatomy of several new specimens of Velociraptor mongoliensis is described. This description concentrates on poorly known aspects of the skeleton of Velociraptor mongoliensis, including several features that are extremely similar to characters found in basal avialans like Archaeopteryx lithographica. Among these the pelvis and shoulder girdle display several characters such as a reduced antiliac shelf, a furcula, a scapula lying in a subhorizontal position relative to the dorsal column, and sternal plates that articulate with the coracoids. Some problematic features and conditions such as the hypopubic cup and the degree of opisthopuby are also discussed in relation to claims made about these features in regard to the origin of Avialae. Comparisons are made between Velociraptor mongoliensis and the enigmatic maniraptoran Unenlagia comahuensis"--P. [1]

    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America

    Get PDF
    The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Member. To better refine taxonomic identifications of isolated theropod dinosaur teeth, we used quantitative analyses of taxonomically comprehensive databases of theropod tooth measurements, adding new data on theropod tooth morphodiversity in this poorly understood interval. We further provide the first descriptions of tyrannosauroid premaxillary teeth and document the earliest North American record of adocid remains, extending the appearance of this ancestrally Asian clade by 5 million years in western North America and supporting studies of pre-Cenomaninan Laurasian faunal exchange across Beringia. The overabundance of mesoeucrocodylian remains at the COI locality produces a comparatively low measure of relative biodiversity when compared to other microvertebrate sites in the Mussentuchit Member using both raw and subsampling methods. Much more microvertebrate research is necessary to understand the roles of changing ecology and taphonomy that may be linked to transgression of the Western Interior Seaway or microhabitat variation

    Best practices for justifying fossil calibrations.

    Get PDF
    Our ability to correlate biological evolution with climate change, geological evolution, and other historical patterns is essential to understanding the processes that shape biodiversity. Combining data from the fossil record with molecular phylogenetics represents an exciting synthetic approach to this challenge. The first molecular divergence dating analysis (Zuckerkandl and Pauling 1962) was based on a measure of the amino acid differences in the hemoglobin molecule, with replacement rates established (calibrated) using paleontological age estimates from textbooks (e.g., Dodson 1960). Since that time, the amount of molecular sequence data has increased dramatically, affording ever-greater opportunities to apply molecular divergence approaches to fundamental problems in evolutionary biology

    A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    Get PDF
    Competing interests: Andrew A. Farke has read the journal's policy and the authors of this manuscript have the following competing interests: Andrew A. Farke is a volunteer section editor and academic editor for PLOS ONE. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.Acknowledgments It is a pleasure to offer our most heartfelt thanks to Scott K. Madsen, who found OMNH 34557 and prepared it with consummate skill. We are grateful to James Taylor, Jack Owen, the Keebler family, and the Montana Bureau of Land Management for access to outcrops of the Cloverly Formation. We thank Xu Xing (IVPP) and Hai-Lu You (formerly CAGS-IG) for facilitating access to specimens, Mark Loewen, Joseph Frederickson, Darren Naish, and Leonardo Maiorino for productive discussion and comments, and Roger Burkhalter for assistance in photography. Gary Wisser, from the scientific visualization center at Western University of Health Sciences, is gratefully acknowledged for the high resolution scan of the cranium. Reviews by Peter Makovicky, Hai-Lu You, and editor Peter Wilf improved the manuscript.Author Contributions Conceived and designed the experiments: AAF WDM RLC. Performed the experiments: AAF WDM RLC. Analyzed the data: AAF WDM RLC MJW. Contributed reagents/materials/analysis tools: AAF WDM RLC MJW. Wrote the paper: AAF WDM RLC MJW.The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous.Funding was received from the National Science Foundation (DEB 9401094, 9870173, http://www.nsf.gov); National Geographic Society (5918-97, http://www.nationalgeographic.com/); and American Chemical Society (PRF #38572-AC8, http://www.acs.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Yeshttp://www.plosone.org/static/editorial#pee

    Anatomy and phylogenetic relationships of the theropod dinosaur Microvenator celer from the Lower Cretaceous of Montana. American Museum novitates ; no. 3240

    No full text
    27 p. : ill. ; 26 cm.Includes bibliographical references (p. 21-23)."The holotype of Microvenator celer Ostrom, 1970 (AMNH 3041) is a partial skeleton of a small maniraptoran theropod from the Lower Cretaceous Cloverly Formation of Montana. We present a detailed redescription of this specimen, emphasizing those features that are of interest for discovering the phylogenetic relationships of Microvenator. Based on several postcranial features, especially the lack of fusion of the neurocentral sutures, we consider AMNH 3041 a juvenile individual. Reexamination of the holotype revealed the presence of several autapomorphies that provide the basis for a revised diagnosis of Microvenator celer. Diagnostic characters include posterior dorsal and caudal vertebrae that are wider than high, the presence of a deep depression on the proximomedial part of the pubis, and an accessory trochanteric ridge below the lesser femoral trochanter. Phylogenetic analysis places Microvenator either among Oviraptorosauria, or as the sister group to the Oviraptorosauria. Among the characters diagnostic for the Oviraptorosauria, anteriorly concave pubes, a proximodorsal tubercle on the manual unguals, and possibly an edentulous dentary with a pronounced symphysis are present in Microvenator. M. celer is the earliest known oviraptorosaurian or oviraptorosaur-like theropod represented by diagnostic skeletal remains"--P. [1]
    corecore